
duces that An ⊆ UG . Let (ck, dk) denote the components of UG . By the lemma one has
G(ck) ≥ G(dk) for each k and hence m∗(E ∩ (ck, dk)) ≤ n(dk − ck)/(n + 1). By (P2),
(P1), and (P3) one thus obtains

m∗(An) ≤
∑

k

m∗(An ∩ (ck, dk)) ≤
∑

k

n

n + 1
(dk − ck) = n

n + 1
m∗(UG).

Therefore m∗(An) < n(m∗(An) + ε)/(n + 1), which implies that m∗(An) < nε. The
assertion follows because ε is arbitrary.

By symmetry, the set B := {x ∈ E/d −(E, x) < 1} also has outer measure zero.
Hence d +(E, x) = d −(E, x) = 1 for almost all x ∈ E , and the proof of Lebesgue’s
theorem is complete.
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1. H. Lebesgue, Leçons sur l’Intégration et la Recherche des Fonctions Primitives, Gauthier Villars, Paris,
1904.
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A Simple Proof of 1 + 1
22 + 1

32 + · · · = π2

6
and Related Identities

Josef Hofbauer

1. A PROOF FOR

1 + 1
22

+ 1
32

+ · · · = π2

6
. (1)

Repeated application of the identity

1

sin2 x
= 1

4sin2 x
2 cos2 x

2

= 1

4

[
1

sin2 x
2

+ 1

cos2 x
2

]
= 1

4

[
1

sin2 x
2

+ 1

sin2 π+x
2

]
(2)

yields
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1 = 1

sin2 π

2

= 1

4

[
1

sin2 π

4

+ 1

sin2 3π

4

]

= 1

16

[
1

sin2 π

8

+ 1

sin2 3π

8

+ 1

sin2 5π

8

+ 1

sin2 7π

8

]
= · · ·

= 1

4n

2n−1∑
k=0

1

sin2 (2k+1)π

2n+1

(3)

= 2

4n

2n−1−1∑
k=0

1

sin2 (2k+1)π

2n+1

. (4)

Taking the termwise limit n → ∞ and using limN→∞ N sin(x/N ) = x for N = 2n

and x = (2k + 1)π/2 yields the series

1 = 8

π2

∞∑
k=0

1

(2k + 1)2
, (5)

from which (1) follows easily.
Now taking the limit termwise requires some care, as the example 1 = 1/2 +

1/2 = 1/4 + 1/4 + 1/4 + 1/4 = · · · → 0 + 0 + 0 · · · = 0 shows. In the above case
(4) → (5) it is justified because the kth term in the sum (4) is bounded by 2/(2k + 1)2

(independently of n) since sin x > 2x/π holds for 0 < x < π/2.

The argument in the last step (i.e., interchanging limit and summation) is known
as Tannery’s Theorem (see [16, p. 292], [5], or [4]); we present it in an appendix at
the end of this Note. It is instructive here to check that (and why) the termwise limit
(3) → (5) fails.

Use of Tannery’s Theorem can be avoided by the following elementary argu-
ment: Sum the inequalities sin−2 x > x−2 > cot2 x = sin−2 x − 1 (which follow from
sin x < x < tan x for 0 < x < π/2) for x = (2k + 1)π/(2N ) with k = 0, . . . , N/2 −
1. Then (4) implies

1 >
8

π2

N/2−1∑
k=0

1

(2k + 1)2
> 1 − 1

N
,

for N = 2n, and hence (5).

2. RELATED PROOFS. The proof in Section 1 was inspired by two related proofs
(# 9 and # 10) among the 14 proofs of Euler’s identity (1) collected by Chapman [6],
and the identity

N−1∑
k=0

1

sin2 (2k+1)π

2N

= N 2, (6)

which I encountered 25 years ago as a mathematics olympiad problem [2]. A proof
for (6) for general N is in Section 3. These two related proofs use instead the identities
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N∑
k=1

cot2 kπ

2N + 1
= N (2N − 1)

3
(7)

and

N∑
k=1

1

sin2 kπ

2N+1

= 2N (N + 1)

3
. (8)

These identities (6)–(8) are usually proved by comparing the coefficients in a suitable
polynomial of degree N whose zeroes are the terms of the sums. This way to prove (1)
via (7) or (8) is described in detail in [5, ch. IX] (which also has (6)) and [17, ch. X],
and was rediscovered in [8], [12], and [13].

The only new (?) feature in the present proof is the restriction to N = 2n where (6)
allows a simpler argument.

For other (more or less) elementary proofs of (1) see [1], [3], [6], [7], [9], [11], [12],
and [15], and references therein. There is an interesting historical account in [15].

3. THE PARTIAL FRACTION EXPANSION OF sin−2 x. The identity (6) is a spe-
cial case (x = π/2) of

1

sin2 x
= 1

N 2

N−1∑
k=0

1

sin2 x+kπ

N

. (9)

This identity follows for N = 2n in the same way as in Section 1, starting from sin−2 x .
Writing it as

1

sin2 x
= 1

N 2

N/2−1∑
k=−N/2

1

sin2 x+kπ

N

yields the partial fraction expansion of sin−2 x in the limit N → ∞:

1

sin2 x
=
∑
k∈Z

1

(x + kπ)2
, (10)

from which (9) can be verified for arbitrary N in turn. As pointed out by the referee,
identity (8) can be derived from (9) by taking the limit x → 0, and replacing N by
2N + 1.

This is a funny variation of Cauchy’s original induction proof for the inequality
of the arithmetic and geometric mean: To prove the identity (9) for arbitrary natural
numbers N , we first prove it by an induction n → 2n for all powers of 2: N = 2n. Then
we take the limit n → ∞ to obtain the infinite series (10), from which the formula
follows for every finite N .

4. THE GREGORY–LEIBNIZ SERIES. The fact that

1 − 1

3
+ 1

5
− + · · · = π

4
(11)

can be proved in a similar fashion. We use the identity
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cot x = 1

2

[
cot

x

2
− tan

x

2

]
= 1

2

[
cot

x

2
− cot

(
π − x

2

)]

instead of (1). Then

1 = cot
π

4
= 1

2

[
cot

π

8
− cot

3π

8

]

= 1

4

[
cot

π

16
− cot

7π

16
− cot

3π

16
+ cot

5π

16

]
= · · ·

= 1

N

N−1∑
k=0

(−1)k cot
(2k + 1)π

4N
(for N = 2n).

Taking the limit N → ∞ and using (1/N ) cot(x/N ) → 1/x yields

1 = 4

π

∞∑
k=0

(−1)k

2k + 1
.

This series is not absolutely convergent. Still, Tannery’s Theorem applies after
combining two consecutive terms, e.g., using the formula cot α − cot β = sin(β −
α)/ sin α sin β.

More generally, the partial fraction expansion of cot x can be derived in a similar
way; see [10, § 24] or [14].

Appendix: Tannery’s Theorem. If s(n) = ∑
k≥0 fk(n) is a finite sum (or a conver-

gent series) for each n, limn→∞ fk(n) = fk , | fk(n)| ≤ Mk, and
∑∞

k=0 Mk < ∞ then

lim
n→∞ s(n) =

∞∑
k=0

fk .

Proof. For any given ε > 0 there is an N (ε) such that
∑

k>N (ε) Mk < ε/3. For each k
there is an Nk(ε) such that | fk(n) − fk| < ε/(3N (ε)) for all n ≥ Nk(ε). Let N̄ (ε) =
max{N1(ε), . . . , NN (ε)(ε)}. Then

|s(n) −
∑

k

fk | ≤
N (ε)∑
k=0

| fk(n) − fk | + 2
∑

k>N (ε)

Mk < N (ε)
ε

3N (ε)
+ 2

ε

3
= ε

for all n ≥ N̄ (ε).

A standard application of Tannery’s Theorem is to show that the two usual defini-
tions of ex are the same:

lim
n→∞

(
1 + x

n

)n = lim
n→∞

n∑
k=0

(
n

k

)
xk

nk
=

∞∑
k=0

xk

k! .

Tannery’s Theorem is related to the M-test of Weierstrass: Let fk : D → R be a
sequence of functions, | fk(x)| ≤ Mk,

∑
k Mk < ∞. Then s(x) = ∑

k fk(x) converges
uniformly, and if each fk is continuous, then s is continuous.
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With the domain D = {1, 2, . . . ,∞} the continuity at ∞ of fk and s yields Tan-
nery’s Theorem.

Tannery’s Theorem is also a special case of Lebesgue’s dominated convergence
theorem on the sequence space �1.
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11. K. Knopp and I. Schur, Über die Herleitung der Gleichung
∑∞

n=1
1

n2 = π2

6 , Archiv Math. Physik 17
(1918) 174–176.

12. R. A. Kortram, Simple proofs for
∑∞

k=1
1
k2 = π2

6 and sin x = x
∏∞

k=1(1 − x2

k2π2 ), Math. Mag. 69 (1996)
122–125.

13. I. Papadimitriou, A simple proof of the formula
∑∞

k=1 k−2 = π2/6, Amer. Math. Monthly 80 (1973)
424–425.
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